Copied to
clipboard

G = C62.3D6order 432 = 24·33

3rd non-split extension by C62 of D6 acting faithfully

non-abelian, supersoluble, monomial

Aliases: C62.3D6, He35(C4⋊C4), He33C42C4, (C2×He3).3Q8, (C3×C6).2Dic6, (C2×He3).14D4, C6.4(D6⋊S3), C2.1(He32D4), C2.2(He32Q8), C6.9(C322Q8), C322(Dic3⋊C4), C6.15(C6.D6), C22.5(C32⋊D6), C3.2(C62.C22), (C22×He3).3C22, (C2×C6).49S32, (C3×C6).7(C4×S3), (C3×C6).9(C3⋊D4), (C2×C3⋊Dic3).3S3, C2.4(He3⋊(C2×C4)), (C2×C32⋊C12).1C2, (C2×He3).14(C2×C4), (C2×He33C4).4C2, SmallGroup(432,96)

Series: Derived Chief Lower central Upper central

C1C3C2×He3 — C62.3D6
C1C3C32He3C2×He3C22×He3C2×C32⋊C12 — C62.3D6
He3C2×He3 — C62.3D6
C1C22

Generators and relations for C62.3D6
 G = < a,b,c,d | a6=b6=1, c6=a3, d2=b3, ab=ba, cac-1=dad-1=a-1b4, cbc-1=b-1, bd=db, dcd-1=b3c5 >

Subgroups: 495 in 107 conjugacy classes, 33 normal (17 characteristic)
C1, C2, C3, C3, C4, C22, C6, C6, C2×C4, C32, C32, Dic3, C12, C2×C6, C2×C6, C4⋊C4, C3×C6, C3×C6, C2×Dic3, C2×C12, He3, C3×Dic3, C3⋊Dic3, C62, C62, Dic3⋊C4, C4⋊Dic3, C2×He3, C6×Dic3, C2×C3⋊Dic3, C32⋊C12, He33C4, C22×He3, Dic3⋊Dic3, C2×C32⋊C12, C2×He33C4, C62.3D6
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, Q8, D6, C4⋊C4, Dic6, C4×S3, C3⋊D4, S32, Dic3⋊C4, C6.D6, D6⋊S3, C322Q8, C32⋊D6, C62.C22, He32Q8, He32D4, He3⋊(C2×C4), C62.3D6

Smallest permutation representation of C62.3D6
On 144 points
Generators in S144
(1 120 80 3 114 74)(2 83 111 4 77 117)(5 104 56 7 98 50)(6 59 107 8 53 101)(9 102 58 11 108 52)(10 49 105 12 55 99)(13 81 113 15 75 119)(14 116 84 16 110 78)(17 91 134 19 85 140)(18 137 94 20 143 88)(21 93 144 23 87 138)(22 135 96 24 141 90)(25 64 129 27 70 123)(26 132 67 28 126 61)(29 124 63 31 130 69)(30 66 127 32 72 121)(33 106 54 35 100 60)(34 57 97 36 51 103)(37 133 86 39 139 92)(38 89 136 40 95 142)(41 73 109 43 79 115)(42 112 76 44 118 82)(45 128 71 47 122 65)(46 62 131 48 68 125)
(1 22 14 20 42 39)(2 40 43 17 15 23)(3 24 16 18 44 37)(4 38 41 19 13 21)(5 46 35 27 11 30)(6 31 12 28 36 47)(7 48 33 25 9 32)(8 29 10 26 34 45)(49 132 57 128 53 124)(50 125 54 129 58 121)(51 122 59 130 55 126)(52 127 56 131 60 123)(61 103 65 107 69 99)(62 100 70 108 66 104)(63 105 67 97 71 101)(64 102 72 98 68 106)(73 85 81 93 77 89)(74 90 78 94 82 86)(75 87 83 95 79 91)(76 92 80 96 84 88)(109 140 113 144 117 136)(110 137 118 133 114 141)(111 142 115 134 119 138)(112 139 120 135 116 143)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143 144)
(1 36 20 31)(2 32 17 33)(3 34 18 29)(4 30 19 35)(5 13 27 38)(6 39 28 14)(7 15 25 40)(8 37 26 16)(9 43 48 23)(10 24 45 44)(11 41 46 21)(12 22 47 42)(49 92 128 84)(50 77 129 85)(51 90 130 82)(52 75 131 95)(53 88 132 80)(54 73 121 93)(55 86 122 78)(56 83 123 91)(57 96 124 76)(58 81 125 89)(59 94 126 74)(60 79 127 87)(61 118 107 141)(62 134 108 111)(63 116 97 139)(64 144 98 109)(65 114 99 137)(66 142 100 119)(67 112 101 135)(68 140 102 117)(69 110 103 133)(70 138 104 115)(71 120 105 143)(72 136 106 113)

G:=sub<Sym(144)| (1,120,80,3,114,74)(2,83,111,4,77,117)(5,104,56,7,98,50)(6,59,107,8,53,101)(9,102,58,11,108,52)(10,49,105,12,55,99)(13,81,113,15,75,119)(14,116,84,16,110,78)(17,91,134,19,85,140)(18,137,94,20,143,88)(21,93,144,23,87,138)(22,135,96,24,141,90)(25,64,129,27,70,123)(26,132,67,28,126,61)(29,124,63,31,130,69)(30,66,127,32,72,121)(33,106,54,35,100,60)(34,57,97,36,51,103)(37,133,86,39,139,92)(38,89,136,40,95,142)(41,73,109,43,79,115)(42,112,76,44,118,82)(45,128,71,47,122,65)(46,62,131,48,68,125), (1,22,14,20,42,39)(2,40,43,17,15,23)(3,24,16,18,44,37)(4,38,41,19,13,21)(5,46,35,27,11,30)(6,31,12,28,36,47)(7,48,33,25,9,32)(8,29,10,26,34,45)(49,132,57,128,53,124)(50,125,54,129,58,121)(51,122,59,130,55,126)(52,127,56,131,60,123)(61,103,65,107,69,99)(62,100,70,108,66,104)(63,105,67,97,71,101)(64,102,72,98,68,106)(73,85,81,93,77,89)(74,90,78,94,82,86)(75,87,83,95,79,91)(76,92,80,96,84,88)(109,140,113,144,117,136)(110,137,118,133,114,141)(111,142,115,134,119,138)(112,139,120,135,116,143), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,36,20,31)(2,32,17,33)(3,34,18,29)(4,30,19,35)(5,13,27,38)(6,39,28,14)(7,15,25,40)(8,37,26,16)(9,43,48,23)(10,24,45,44)(11,41,46,21)(12,22,47,42)(49,92,128,84)(50,77,129,85)(51,90,130,82)(52,75,131,95)(53,88,132,80)(54,73,121,93)(55,86,122,78)(56,83,123,91)(57,96,124,76)(58,81,125,89)(59,94,126,74)(60,79,127,87)(61,118,107,141)(62,134,108,111)(63,116,97,139)(64,144,98,109)(65,114,99,137)(66,142,100,119)(67,112,101,135)(68,140,102,117)(69,110,103,133)(70,138,104,115)(71,120,105,143)(72,136,106,113)>;

G:=Group( (1,120,80,3,114,74)(2,83,111,4,77,117)(5,104,56,7,98,50)(6,59,107,8,53,101)(9,102,58,11,108,52)(10,49,105,12,55,99)(13,81,113,15,75,119)(14,116,84,16,110,78)(17,91,134,19,85,140)(18,137,94,20,143,88)(21,93,144,23,87,138)(22,135,96,24,141,90)(25,64,129,27,70,123)(26,132,67,28,126,61)(29,124,63,31,130,69)(30,66,127,32,72,121)(33,106,54,35,100,60)(34,57,97,36,51,103)(37,133,86,39,139,92)(38,89,136,40,95,142)(41,73,109,43,79,115)(42,112,76,44,118,82)(45,128,71,47,122,65)(46,62,131,48,68,125), (1,22,14,20,42,39)(2,40,43,17,15,23)(3,24,16,18,44,37)(4,38,41,19,13,21)(5,46,35,27,11,30)(6,31,12,28,36,47)(7,48,33,25,9,32)(8,29,10,26,34,45)(49,132,57,128,53,124)(50,125,54,129,58,121)(51,122,59,130,55,126)(52,127,56,131,60,123)(61,103,65,107,69,99)(62,100,70,108,66,104)(63,105,67,97,71,101)(64,102,72,98,68,106)(73,85,81,93,77,89)(74,90,78,94,82,86)(75,87,83,95,79,91)(76,92,80,96,84,88)(109,140,113,144,117,136)(110,137,118,133,114,141)(111,142,115,134,119,138)(112,139,120,135,116,143), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,36,20,31)(2,32,17,33)(3,34,18,29)(4,30,19,35)(5,13,27,38)(6,39,28,14)(7,15,25,40)(8,37,26,16)(9,43,48,23)(10,24,45,44)(11,41,46,21)(12,22,47,42)(49,92,128,84)(50,77,129,85)(51,90,130,82)(52,75,131,95)(53,88,132,80)(54,73,121,93)(55,86,122,78)(56,83,123,91)(57,96,124,76)(58,81,125,89)(59,94,126,74)(60,79,127,87)(61,118,107,141)(62,134,108,111)(63,116,97,139)(64,144,98,109)(65,114,99,137)(66,142,100,119)(67,112,101,135)(68,140,102,117)(69,110,103,133)(70,138,104,115)(71,120,105,143)(72,136,106,113) );

G=PermutationGroup([[(1,120,80,3,114,74),(2,83,111,4,77,117),(5,104,56,7,98,50),(6,59,107,8,53,101),(9,102,58,11,108,52),(10,49,105,12,55,99),(13,81,113,15,75,119),(14,116,84,16,110,78),(17,91,134,19,85,140),(18,137,94,20,143,88),(21,93,144,23,87,138),(22,135,96,24,141,90),(25,64,129,27,70,123),(26,132,67,28,126,61),(29,124,63,31,130,69),(30,66,127,32,72,121),(33,106,54,35,100,60),(34,57,97,36,51,103),(37,133,86,39,139,92),(38,89,136,40,95,142),(41,73,109,43,79,115),(42,112,76,44,118,82),(45,128,71,47,122,65),(46,62,131,48,68,125)], [(1,22,14,20,42,39),(2,40,43,17,15,23),(3,24,16,18,44,37),(4,38,41,19,13,21),(5,46,35,27,11,30),(6,31,12,28,36,47),(7,48,33,25,9,32),(8,29,10,26,34,45),(49,132,57,128,53,124),(50,125,54,129,58,121),(51,122,59,130,55,126),(52,127,56,131,60,123),(61,103,65,107,69,99),(62,100,70,108,66,104),(63,105,67,97,71,101),(64,102,72,98,68,106),(73,85,81,93,77,89),(74,90,78,94,82,86),(75,87,83,95,79,91),(76,92,80,96,84,88),(109,140,113,144,117,136),(110,137,118,133,114,141),(111,142,115,134,119,138),(112,139,120,135,116,143)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143,144)], [(1,36,20,31),(2,32,17,33),(3,34,18,29),(4,30,19,35),(5,13,27,38),(6,39,28,14),(7,15,25,40),(8,37,26,16),(9,43,48,23),(10,24,45,44),(11,41,46,21),(12,22,47,42),(49,92,128,84),(50,77,129,85),(51,90,130,82),(52,75,131,95),(53,88,132,80),(54,73,121,93),(55,86,122,78),(56,83,123,91),(57,96,124,76),(58,81,125,89),(59,94,126,74),(60,79,127,87),(61,118,107,141),(62,134,108,111),(63,116,97,139),(64,144,98,109),(65,114,99,137),(66,142,100,119),(67,112,101,135),(68,140,102,117),(69,110,103,133),(70,138,104,115),(71,120,105,143),(72,136,106,113)]])

38 conjugacy classes

class 1 2A2B2C3A3B3C3D4A···4F6A6B6C6D···6I6J6K6L12A···12L
order122233334···46666···666612···12
size11112661218···182226···612121218···18

38 irreducible representations

dim1111222222244446666
type+++++-+-++--+-+-
imageC1C2C2C4S3D4Q8D6Dic6C4×S3C3⋊D4S32C6.D6D6⋊S3C322Q8C32⋊D6He32Q8He32D4He3⋊(C2×C4)
kernelC62.3D6C2×C32⋊C12C2×He33C4He33C4C2×C3⋊Dic3C2×He3C2×He3C62C3×C6C3×C6C3×C6C2×C6C6C6C6C22C2C2C2
# reps1214211244411112222

Matrix representation of C62.3D6 in GL10(𝔽13)

10000000000
01000000000
3040000000
0304000000
00000000112
000012120021
0000000010
00001200010
00000012010
00000001210
,
12000000000
01200000000
00120000000
00012000000
00000120000
00001120000
000010121200
00000121000
000010001212
00000120010
,
710126000000
31076000000
0063000000
00103000000
0000920000
00001140000
00000400911
0000900024
000011221100
00000491100
,
91184000000
2495000000
0042000000
00119000000
00001200000
00000120000
00000000012
000012120011
000012121100
00000012000

G:=sub<GL(10,GF(13))| [10,0,3,0,0,0,0,0,0,0,0,10,0,3,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,12,0,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,1,2,1,1,1,1,0,0,0,0,12,1,0,0,0,0],[12,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,0,1,1,0,1,0,0,0,0,0,12,12,0,12,0,12,0,0,0,0,0,0,12,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,0,12,1,0,0,0,0,0,0,0,0,12,0],[7,3,0,0,0,0,0,0,0,0,10,10,0,0,0,0,0,0,0,0,12,7,6,10,0,0,0,0,0,0,6,6,3,3,0,0,0,0,0,0,0,0,0,0,9,11,0,9,11,0,0,0,0,0,2,4,4,0,2,4,0,0,0,0,0,0,0,0,2,9,0,0,0,0,0,0,0,0,11,11,0,0,0,0,0,0,9,2,0,0,0,0,0,0,0,0,11,4,0,0],[9,2,0,0,0,0,0,0,0,0,11,4,0,0,0,0,0,0,0,0,8,9,4,11,0,0,0,0,0,0,4,5,2,9,0,0,0,0,0,0,0,0,0,0,12,0,0,12,12,0,0,0,0,0,0,12,0,12,12,0,0,0,0,0,0,0,0,0,1,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,1,0,0] >;

C62.3D6 in GAP, Magma, Sage, TeX

C_6^2._3D_6
% in TeX

G:=Group("C6^2.3D6");
// GroupNames label

G:=SmallGroup(432,96);
// by ID

G=gap.SmallGroup(432,96);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,28,141,36,571,4037,537,14118,7069]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^6=1,c^6=a^3,d^2=b^3,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1*b^4,c*b*c^-1=b^-1,b*d=d*b,d*c*d^-1=b^3*c^5>;
// generators/relations

׿
×
𝔽